Back to all company news
Company news
June 14, 2021

Visualising Macrobond data as maps using Python

Step-by-step instructions
Share on LinkedIn
Share on X

You already know how to visualise Macrobond’s wealth of macroeconomic and financial aggregate data using a variety of line, bar and other charts.

But did you know you can also use it to create geographic heat map like this one below in just a few steps?

Our World in Data, COVID-19, Vaccinations, People Fully Vaccinated Per Hundred

Step 1: Find the same variable for several countries. Use the search functionality in the Macrobond API for a specific concept. Find this under “Time Series information” in the application or by accessing the metadata in Python. In this example we use a time series of Covid vaccinations and access that region key.

import win32com.client

import pandas as pd

c = win32com.client.Dispatch("Macrobond.Connection")

d = c.Database

Getting the region key/concept

s = d.FetchOneSeries("owidvacci_ar_pfvph")

key = s.Metadata.GetFirstValue("RegionKey") #Getting the region key of a series

regionkey = d.FetchOneEntity(key)

regionkeydesc =regionkey.Metadata.GetFirstValue("Description") #Getting the full name of the region key

regionkeydesc

Step 2: After finding the region key, use it to perform your search.  

Searching for all series with the region key/concept

query = d.CreateSearchQuery()

query.SetEntityTypeFilter("TimeSeries")

query.AddAttributeValueFilter("RegionKey", key)

result = d.Search(query).Entities

Step 3: After receiving the search result, get the relevant metadata for constructing the map. In this example, we used the last value of the series, the region name and the ISO 3 code for the country.

Getting the last value and the region of the series via the metadata

val = pd.DataFrame(columns=['value'])

region = pd.DataFrame(columns=['region'])

 for s in result:

region=region.append({'region': s.Metadata.GetFirstValue("Region")},ignore_index=True)

val= val.append({'value':s.Metadata.GetFirstValue("LastValue")}, ignore_index=True)

Translating the region code to ISO 3 and accessing the full name of the country

li=region.values.tolist()

iso = pd.DataFrame(columns=['iso'])

country = pd.DataFrame(columns=['country'])

entities = d.FetchEntities(li)

for e in entities:

iso= iso.append({'iso':e.Metadata.GetFirstValue("IsoCountryCode3")}, ignore_index=True)

country=country.append({'country': e.Metadata.GetFirstValue("Description")},ignore_index=True)

Step 4: Merge this data into the same data frame.

Merging the ISO3, Country name, Region and Values into one

df = pd.merge(iso, country, left_index=True, right_index=True)

df=pd.merge(df, region, left_index=True, right_index=True)

df=pd.merge(df, val, left_index=True, right_index=True)

df['iso'] = df['iso'].str.upper() # Making sure that the data is inupper cases

Step 5: Once you have the data, use plotly to createthe map.

import plotly.graph_objects as go 

fig = go.Figure(data=go.Choropleth(

   locations = df['iso'],

   z = df['value'],

   text = df['country'],

   colorscale = 'viridis',

   autocolorscale=False,

   reversescale=True,

   marker_line_color='darkgray',

   marker_line_width=0.5,

   colorbar_title = '',

))

Adding a dynamic title and sourcing

fig.update_layout(

   title_text=regionkeydesc,

   geo=dict(

       showframe=False,

       showcoastlines=False,

      projection_type='equirectangular'

   ),

   annotations = [dict(

       x=0.55,

       y=0.00001,

       xref='paper',

       yref='paper',

       text='Source: <ahref="https://www.macrobond.com/">Macrobond</a>',

       showarrow = False

   )]

Here’s the full script:

import plotly.express as px

import win32com.client

import pandas as pd

c = win32com.client.Dispatch("Macrobond.Connection")

d = c.Database

Getting the region key

s = d.FetchOneSeries("owidvacci_ar_pfvph")

key = s.Metadata.GetFirstValue("RegionKey") #Getting theregion key of a series

regionkey = d.FetchOneEntity(key)

regionkeydesc = regionkey.Metadata.GetFirstValue("Description")#Getting the full name of the concept 

regionkeydesc

Searching for all series with the region key/concept

query = d.CreateSearchQuery()

query.SetEntityTypeFilter("TimeSeries")

query.AddAttributeValueFilter("RegionKey", key)

result = d.Search(query).Entities

Getting the last value and the region of the series via the metadata

val = pd.DataFrame(columns=['value'])

region = pd.DataFrame(columns=['region'])

for s in result:

   region= region.append({'region':s.Metadata.GetFirstValue("Region")}, ignore_index=True)

   val= val.append({'value':s.Metadata.GetFirstValue("LastValue")}, ignore_index=True)

Translating the region code to ISO 3 and accessing the full name of thecountry

li=region.values.tolist()

iso = pd.DataFrame(columns=['iso'])

country = pd.DataFrame(columns=['country'])

entities = d.FetchEntities(li) 

for e in entities:

   iso= iso.append({'iso':e.Metadata.GetFirstValue("IsoCountryCode3")}, ignore_index=True)

   country=country.append({'country': e.Metadata.GetFirstValue("Description")},ignore_index=True)

Merging the ISO3, Country name, Region and Values into one

df = pd.merge(iso, country, left_index=True, right_index=True)

df=pd.merge(df, region, left_index=True, right_index=True)

df=pd.merge(df, val, left_index=True, right_index=True)

df['iso'] = df['iso'].str.upper()

import plotly.graph_objects as go

fig = go.Figure(data=go.Choropleth(

   locations = df['iso'],

   z = df['value'],

   text = df['country'],

   colorscale = 'viridis',

   autocolorscale=False,

   reversescale=True,

   marker_line_color='darkgray',

   marker_line_width=0.5,

   colorbar_title = '',

))

Adding a dynamic title and sourcing

fig.update_layout(

   title_text=regionkeydesc,

   geo=dict(

       showframe=False,

       showcoastlines=False,

      projection_type='equirectangular'

   ),

   annotations = [dict(

       x=0.55,

       y=0.00001,

       xref='paper',

       yref='paper',

       text='Source: <ahref="https://www.macrobond.com/">Macrobond</a>',

       showarrow = False

   )]

)

Close
Previous
Next
Close
Cookie consent
We use cookies to improve your experience on our site.
To find out more, read our terms and conditions and cookie policy.
Accept
Heading
This is some text inside of a div block.
Click to enlarge
Premium data
This chart integrates premium data from our world-leading specialist data partners (When viewing the chart in Macrobond, premium data sources will only display for premium data subscribers)
Learn more
https://www.macrobond.com/solutions/data#premium-data
Revision History
This chart features Macrobond’s unique Revision History data which shows how key macroeconomic indicators have been revised over time
Learn more
https://help.macrobond.com/tutorials-training/3-analyzing-data/analysis-tree/using-the-series-list/vintage-data/
Change Region
This chart benefits from Macrobond's unique Change Region feature which allows the same analysis to be instantly applied to different regions. Click on learn more to see it in action!
Learn more
/insights/tips-and-tricks/change-region-function